
1

Mobile Security: how smart are
mobile phones today?

Prof. Alessio Merlo

DIBRIS – University of Genoa

2

Before starting….

• Take you time to answer these question, w.r.t. your everyday
use of smartphones and tablets:

1. How long do you use a smartphone?

2. Does the kind of activities that you carry out on your
smartphone changed during time?

3. What kind of applications do you commonly use?

4. Do you TRUST your smartphone? To which extent?

3

Some important key concepts

• Asset: An asset is what we’re trying to protect.

• Vulnerability: A vulnerability is a weakness or gap in our protection
efforts.

• Threat: A threat is what we’re trying to protect against.

• Risk: Risk is the intersection of assets, threats, and vulnerabilities.

• If your system has a vulnerability, a malicious entity can try to exploit
it (attack).

• All systems have vulnerabilities.

4

Mobile Apps

• Steady growth of number of mobile apps
• Apps are getting more and more

sophisticated (and hence complex)

• Most users
• grant security-critical permissions without

hesitation
• use apps for security-critical operations (e-

health, mobile banking, …)
• Little/no confidence on apps even if they

come from official stores
• Trust?
• Security?

We focus on Android in this talk but no… ioS is not more
secure than Android 

Let’s start with some (very) basics on Android Security.

6

Application Packages (APK)

• Contains:

• Compiled sources of the application (Classes.dex)

• Resources (images, videos,…)

• Native libraries (C/C++ shared libraries)

• META-INF (application certificate and package manifest)

9

Security Benefits

• Integrity check (APK cannot be modified after its initial packaging)

• Same origin policy

• Update only possible with packages signed with the same developer key

BUT:

• Google allows self-signed certificates

• Authenticity of developer not ensured!

10

Sandboxing

11

Sandboxing

Each application (and its resources) is confined in a
single Linux process.

Each application owns a private data folder.

The sandbox specifies which system resources the
application is allowed to access and how can interact
with other applications.

12

Application Sandbox

• The isolation is enforced at the Kernel level.

• Each application has a unique UID and GID.

13

Application Sandbox

• BUT

• The DVM Sandbox is not a

security boundary!

• Easily circumvented with native

code

• Problems with some native Linux

operations !!!

14

Permissions and Least Privilege

15

Android Permission System

• Required to gain access to:

• System Resources (e.g. battery, driver)

• Sensitive data (e.g. SMS, contacts)

• System interfaces (e.g. Internet, send SMS,..)

• Assigned to UIDs

• Applications can define their own permission to protect app

interfaces

16

Android Permission Example

17

Android App Installation

• During installation user was prompted for

required permissions (now “at runtime”)

• All-or-nothing approach

• User decides on his own if an app requires

proper permission

18

Android Insecurity

Are the previous security mechanisms enough?

Android is the most used operating system in mobile
devices

HOWEVER

It is the most targeted by malwares

19

Fonte:

http://www.zdnet.com/

20

Fonte:

http://www.zdnet.com/

21

Fonte:

http://www.zdnet.com/

22

Fonte:

http://www.zdnet.com/

23

Fonte:

http://www.zdnet.com/

24

Fonte:

http://www.zdnet.com/

25

Android Vulnerabilities

26

Android Vulnerabilities

• Android is affected by both System and Application vulnerabilites.

• Example of System Vulnerability: Zygote Vulnerability

• Example of Application vulnerability: Android Master Key exploit.

29

Android Master Key
Vulnerability

• Android verifies the apk signature before its installation.

• Apk modifications after the signing phase are not allowed.

30

Android Master Key
Vulnerability

Android verifies only the first file with the same name.

BUT
installs the second file in the list!

The vulnerability is due to the use of two different libraries for

verification and installation.

31

More Info

32

More Info

Jeff Forristal
Android Master Key Exploit – Uncovering Android Master

Key That Makes 99% of Devices Vulnerable
https://bluebox.com/technical/uncovering-android-

master-key-that-makes-99-of-devices-vulnerable/

33

Android Malware

• Most of malwares affect unlocked devices.

• Android is vulnerable to privilege escalation attacks :
• System-level -> Root Exploits

• Application-level -> Confused Deputy attacks, collusion
attacks

34

System-level: Root Exploits

• Used for unlocking root privileges on a mobile device.

BUT A ROOT USER CAN:

1. Inherently holds all privileges

2. Can silently install new apps

3. Has full storage access

4. Can execute low-level security sensitive operations

35

Example: GingerBreak Root
Exploit

• Attacker can deliberately cause a fail in
setUID of newly created process by
Zygote.

• New process continues executing with
root privileges.

• Loading an apk in such a new process
cause its code to run with all privileges.

36

Application-level Privilege Escalation Attacks

37

Confused Deputy attacks

• A privilege app (i.e. has permission to access resources)
is fooled into misusing its privilege on behalf of a
malicious unprivileged app.

38

Example: Exploit browser
permission

A. Lineberry, D. L. Richardson, and T. Wyatt, “These aren’t the

permissions you’re looking for.”

http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf, 2010.

DefCon 18.

39

Confused Deputies by OEMs

• Samsung introduces several confused deputies in its device firmware

• E.g. An application that can be used as a root shell by others.

A. Moulo, “Android OEM’s applications (in)security and backdoors without

permission.”

http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-

without-permission.pdf.

40

Collusion Attacks

• Malicious application can collude to merge their respective

permissions.

• They can communicate using Intents or Covert channels

41

SoundComber

• In USA credit companies allow financial transaction through

phone calls.

• User is invited to give his credit card number.

• Soundcomber is a colluded application malware that can steal

this number and sends it to an external server.

• Soundcomber relies on Android OS volume settings for data

transmission.

R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,

“Soundcomber: A stealthy and context-aware sound trojan for smartphones,”

in Proc. 18th Annual Network and Distributed System Security Symposium

(NDSS ’11), The Internet Society, 2011

42

SoundComber

43

SoundComber

44

SoundComber

45

SoundComber

46

SoundComber

47

Covert Channels

• Malwares identifies other channels for data exchange:

• Light state

• Active process or threads

• Sound settings (Sondcomber is an example)

• The stealtier the channels is, the less data can be sent.

48

Example: Audio & Light
Covert Channels

Some research discovers new channels to trigger malware:

- Surround music

- Light of a monitor/tv

In their experiments they are able to activate a malware from 55

meters away in a crowded Starbucks using music.

Hasan, Ragib, et al. "Sensing-enabled channels for hard-to-

detect command and control of mobile

devices." Proceedings of the 8th ACM SIGSAC symposium

on Information, computer and communications security.

ACM, 2013.

49

Considerations

• Ok but Android evolves, new versions are released so….

AREN’T WE MORE SECURE NOW?

• Fixing discovered vulnerabilities implies that such vulnerabilities
disappear  RIGHT

• Android is fixed and new versions are more evolved  ARE THERE
ALSO MORE SECURE THAN PREVIOUS ONE?

NO !!!

Why? Usability vs. Security dilemma.

50

Recent Android versions

• The latest Android version (Android 8, Oreo) introduced two features
in the name of convenience («Usability»):

• Autofill Framework

• Instant Apps

Do they streghten the reliability of Android?

Can they be abused?

Considerations:

The Autofill Framework in some ways violates sandboxing

Instant Apps mechanism allows to execute remote code

52

Automated Vulnerability
Assessment of Mobile Apps

53

APPROVER: Automatic
mobile app security analysis

54

● Detection of permissions abuse & misuse by

in-depth inspection of actual code

Permission Analysis

55

● Signature-based malware detection

● Leverages 30+ anti-malware engines

Malware Analysis

56

●50+ known code vulnerability patterns

●Pointers for quick review and inspection

●Description, guidelines and countermeasures

Vulnerability Analysis

57

●Checks apps against behavioral patterns (aka policies)

●Predefined policy from OWASP Mobile Top 10

Policy Checker

58

● Summarizes the application security assessment

● Provides fast-to-read overall score

Risk Analysis

59

Approver Automatic Risk Evaluation

Overprivileged or misconfigured apps

Evaluates similarity against a large

dataset of malware families

(6000+ samples)

Permission Risk Vulnerability Risk Malware Risk
70+ known code vulnerability patterns

Vulnerabilities are categorized into

four danger levels

(info, notice, warning, critical)

30+ anti-malware engines

Risk calculated as a weighted sum on the

number of malware occurrences

Overall Risk

60

#1 Security App Monitoring

at Poste Italiane CERT

#2 Preliminary Analysis of

two popular apps

Major Bank#3 In-depth Risk Analysis of

Banking App

Major Automotive Company

Success Stories

62

Analysis of Apps from

Automotive Domain

APPROVER reports:

1. No effective SSL

certificates checking

2. WebView accepts

illegal SSL certificates

3. 20+ additional issues

Diagnosis: vulnerable against Man-In-The-Middle attacks

(Tested, confirmed and reported in one day)

“Critical vulnerability that allows

attackers to mount MITM attacks”

63

Italian Mobile Bank - Security
Report

Apps for Mobile Banking of TOP 20 Italian Bank

Institutes

Home Banking

Apps
APPROVER Report

64

65

Vulnerability assessment of
security-critical mobile app

Lo
w

M
ed

iu
m

H
ig

h

Likelihood Level

Low Medium High

High Priority

Im
p

ac
t

Le
ve

l

Low Priority

= High = Medium = Low= Critical

01

02

0504

06

07
08

11

14
1918

20

21

22

01

02

04

05

06

07

08

11

12

13

14

16

18

19

20

21

22

M5 - Insufficient Cryptography

M8 - Code Tampering

M3 - Insecure Communication

M10 - Extraneous Functionality

M10 - Extraneous Functionality

M9 - Reverse Engineering

M8 - Code Tampering

M4 - Insecure Authentication

M9 - Reverse Engineering

M1 - Improper Platform Usage

M8 - Code Tampering

M2 - Insecure Data Storage

M2 - Insecure Data Storage

M2 - Insecure Data Storage

M3 - Insecure Communication

M5 - Insufficient Cryptography

M2 - Insecure Data Storage

M1 - Improper Platform Usage

M1 - Improper Platform Usage

M1 - Improper Platform Usage

M7 - Client Code Quality

M5 - Insufficient Cryptography

17

09

091612
13

17

03 03

10

15

15

10

66

Vulnerability assessment of
top-15 mobile apps in
security-critical sector

Result: most

apps fail basic

security

controls

Spin-off of the University of Genova

67

Italian Mobile Bank - Security
Report

of Apps fails in Client-Server Authentication94,4%

68

Conclusions

Recent work: we analyzed the top 50 online trading apps and they
suffers from the same issues.

Some considerations:

• Mobile Security, as security in general, is a moving target: you solve a
problem, a plethora of new ones come up.

• App are always more security-sensitive

• IoT will make things worse

