### The role of Data Analytics and Social Networks in Cyber Security

Prof. Rodolfo Zunino
DITEN
Genoa University











### Overview

- Data Analytics, Social Networks
- Enabling Technologies
- DA and SN in CyberSecurity
- Sample Session
- Perspectives





### Data Analytics, Social Networks









### Data Analytics

- Handling massive amounts of data
- Data → Information → Knowledge
- Data is not homogeneous
  - Structured data
  - Unstructured data
- Purpose is the leading key







### Social Networks

- Massive amounts of data → ok
- Data → Information → Knowledge
- Unstructured data
  - Natural (not so natural) language
- Purpose ?
  - Monitoring
  - Predicting
  - Profiling





# Enabling Technologies For Data Analytics









- Purpose: understanding/grouping
  - Unsupervised learning
  - Clustering
- Purpose: recognition
  - Supervised learning
  - Classification (e.g. deep learning)
- Different scopes, different issues









- Metric
  - Need to define similarity before clustering
- Algorithm
  - Complexity
  - Computational cost
  - Storage/timing requirements
- Experience!







- Computation time
  - Complexity can scale as O(2)
- Performance measurement
  - How do we measure it?
- Reporting results
  - Presentation is paramount









### Classification Ingredients

- Labeled Training Set
  - Can be partial, however accurate
- Algorithm
  - Predicted accuracy (complexity)
  - Implementation cost
- Experience!







### Issues in Classification

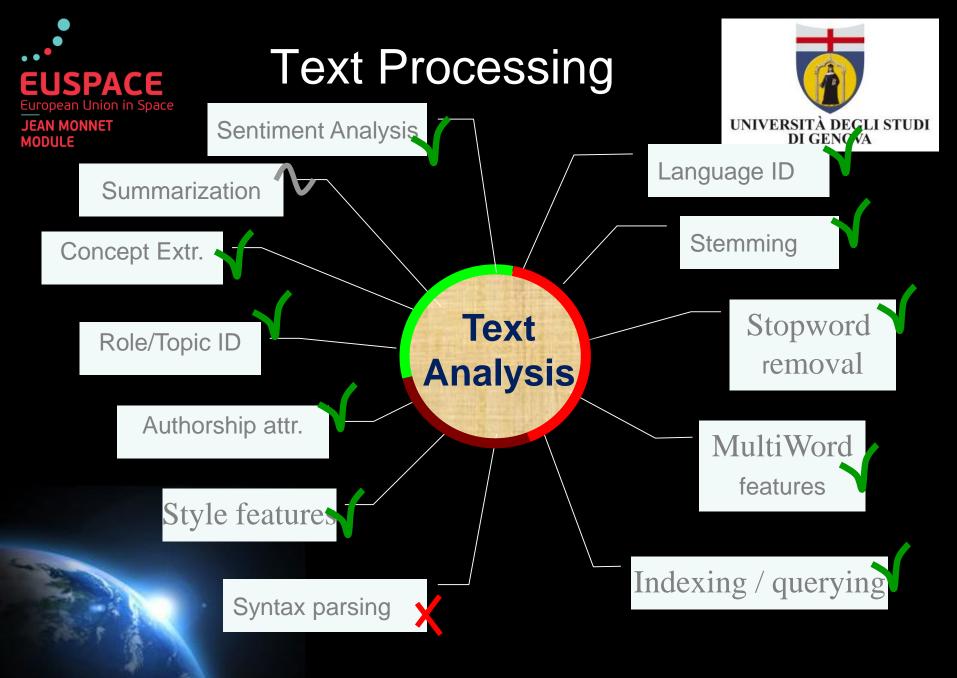
- Confidence in Predicted Error
  - Depends on many factors
  - Training set size
  - Classifier complexity
- MultiClass problems
- Cheating





# Enabling Technologies for Social Network handling










### **Text Mining**

- Text processing
- Semantic characterization
- Text retrieval
- Text clustering
- Text classification







# Data Analytics and Social Networks In Cyber Security



## Case Study I The cute Prince









SICUREZZA INFORMATICA

#### Usa, hacker viola computer di un aereo in volo, l'Fbi indaga

Chris Roberts sarebbe riuscito a prendere il controllo di un aereo tra le 15 e le 20 volte in tre anni sfruttando le falle del Wi Fi a bordo e dei programmi di intrattenimento

di Marta Serafini

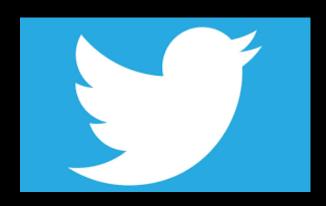




Find myself on a 737/800, lets see Box-IFE-ICE-SATCOM, ? Shall we start playing with EICAS messages? "PASS OXYGEN ON" Anyone ? :)
— Chris Roberts (@Sidragon1) 15 Aprile 2015






L'attenzione dell'Fbi si era concentrata su di lui lo scorso aprile dopo un tweet in cui Chris Roberts lasciava intendere di aver hackerato il sistema di un aereo di un volo della United Airlines in servizio da Chicago. Alla fine della scaletta, al suo arrivo a Syracyuse, Roberts aveva trovato l'Fbi. Dopo un'accurata perquisizione l'uomo era risultato in possesso di un computer e di una chiavetta Usb. Ma non solo, i sistemi di intrattenimento del posto da lui occupato risultavano manomessi.



## Case Study III guess what?















### Purpose is the leading key

- Purpose: surveillance
  - Monitoring
  - Clustering
- Purpose: detection
  - Anomaly detection
  - Event recognition







### Purpose is the leading key

- Purpose: prevention (early warning)
  - Monitoring
  - Profiling
- Purpose: prediction
  - Semantic analysis
  - User categorization
    - Election outcome forecasting







### Purpose is the leading key

- Purpose: control
  - Information injection
  - User/Leader identification
- Purpose: attack
  - Information gathering
  - Preparation for APT





### Sample Session







### Perspectives









- Text mining is mature technology
- Data Analytics is mature
- Social Networks are pervasive
- →What do you expect as a result?
- Semantic analysis is improving
- Artificial Intelligence is consolidating
- → What do you expect as a result?



### Promised Land





