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Artificial Intelligence (AI)

Intro Machine Learning slide
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Linear regression and neural network
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Linear regression
Linear regression is a linear approach to modeling the relationship
between a scalar response (or dependent variable) and one or
more explanatory variables (or independent variables).

10



Linear regression
Linear regression is a linear approach to modeling the relationship
between a scalar response (or dependent variable) and one or
more explanatory variables (or independent variables).

Linear regression slide for details…
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Neural network
An artificial neural network is an interconnected group of
nodes, inspired by a simplification of neurons in a brain.
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Neural network
An artificial neural network is an interconnected group of
nodes, inspired by a simplification of neurons in a brain.

These mathematical models are too simple to gain an
understanding of biological neural networks, but they are
used to try to solve artificial intelligence engineering
problems such as those that arise in different technological
fields.
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Neural network
An artificial neural network is an interconnected group of
nodes, inspired by a simplification of neurons in a brain.

Such systems "learn" to perform tasks by considering
examples, generally without being programmed with task-
specific rules.
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Neural network
An artificial neural network is an interconnected group of
nodes, inspired by a simplification of neurons in a brain.

Such systems "learn" to perform tasks by considering
examples, generally without being programmed with task-
specific rules.

For example, in image recognition, they might learn to identify images that contain
cats by analyzing example images that have been manually labeled as "cat" or "no
cat" and using the results to identify cats in other images.
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Applications in aerospace 
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NASA Langley Technical Areas
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Earth observation - satellite image analysis
Vast amount of digital satellite and aerial imagery is being acquired by
modern Earth Observation sensors every day.

Analyze the raw imagery quickly, extract useful, actionable information
with higher accuracy, and apply decision making and applications.
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Satellite gateway fault prediction

Satellite fault prediction slide
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Mars express power challenge

Predict the power or fuel consumption of the spacecraft.

Three years of spacecraft telemetry are released, can you
predict the fourth year?

Automate operations and extend satellite life time, which in
turn increases the scientific return.
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Mars express power challenge

Predict the power or fuel consumption of the spacecraft.

Three years of spacecraft telemetry are released, can you
predict the fourth year?

Automate operations and extend satellite life time, which in
turn increases the scientific return.
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Physics-Informed Machine Learning
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Physics-Informed Machine Learning
Assist but respect models: Machine learning should be used
to correct/improve existing models, not to replace them.

Cost effective & exact solution: Turbulent flow & Solid
Mechanics modeling, Optimal design of Aircraft & Rocket
engine.
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Physics-Informed Machine Learning
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Aircraft engine controller
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• Gas turbine engine coupled with an engine controller.
• Several type of faults and attacks (e.g., hot start, hung start and

start stall) will be tested in the different flight modes (take-off,
cruise, landing).

• Interaction between cyber models.



Aerospace Data Assistant
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Cognitive Assessment of Crew State Monitoring Rapid Exploration of Aerospace Designs

Build classification models for predicting cognitive 
state using physiological data collected during flight 

simulations

Goals
• Identify unsafe cognitive states in aircrew real-time
• Apply results for more effective pilot training

Techniques
• Ensemble of machine learning tools (deep neural network, 

gradient boosting, random forest, support vector machine, 
decision tree)

• Data pre-processing using detrending and power spectral 
density  

Accomplishments & Next Steps
• Initial data mapping, statistical analysis, and signals 

processing
• Explore combining multiple signal models using ensemble
• Developing models from test subjects data from different 

days

Develop a generalized machine learning platform to be 
used for analyzing mod-sim data for design optimization 

Goals
• Provide surrogate modeling to explore the trade 

space of aerospace vehicle designs with easy-to-use 
web interface

• Use fast machine learning models instead of 
computationally-intensive code for rapid exploration 
and optimization

Techniques
• Supervised machine learning algorithms, SVM, and 

Neural Networks trained on labeled data

Accomplishments & Next Steps
• Python 2.7 with SKLearn algorithms are being used 
• Web interface using PHP being developed  for SME 

use

Aerospace Data Assistants Projects



Linear regression

Application 1: 

Non-Destructive Evaluation (NDE) Image 
analysis

Goal: 

Automate delamination detection

Method: Fit data with linear regression and 
detect outlier regions. Regression performed 
on 1D and 2D signals; Uses C ++ and R

Application 2: 

Aeroelastic Flutter Data Analytics

Goal: 

Detect precursors and onset of aeroelastic 
flutter

Method: Fit best quadratics between 
structural modes to detect mode 
coalescence; Uses MatLab

Top: Linear regression of 1D-signals for anomaly detection in 
carbon fiber; Bottom: Mode identification in flutter time-series 
data using linear regression



Artificial neural networks 

Application 1: Crew State Monitoring

Goal: Build classification models capable 
of accurate, real-time prediction of 
aircrew cognitive state using physio data 
collected during flight simulations

Method: ANN trained to classify 
cognitive state

EEG ECG Galvanic Skin ResponseRespiration Rate Eye Tracking

Feature Generation

Input Layer

Hidden Layer

Output Layer / 
Classification

“Normal” 
State

Channelized
Attention

Diverted
Attention

Startle /
Surprise



NASA vision of Aerospace Data Analytics

(cognitive machine learning) 
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Current State

SME relies on traditional methods to pre-
select data; Requires expertise and is time-

consuming

Being Developed 

Long Term Vision 

Algorithms that mimic SME knowledge:
• Validate the 

algorithm 
• Save SME time 

Application of algorithms to 
data, and to other legacy 

datasets 

Yields New Insights

Virtual Expert
Autonomous Assistant to SME that analyzes 

all possible data and augments decision 
making

Aerospace Data Analytics:  Challenge of Physics-Based Algorithms

All Data

SME-defined 
subset of data

Being Developed

Data Mining 
techniques to detect 

patterns and 
correlations which 
will be validated by 

SMEs

Data 
Analytics 
Team and 

SMEs 
working 
together
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eXplainable AI (XAI) 
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Intelligible analytics - why

Artificial Intelligence Is Setting Up the Internet for a Huge Clash With Europe

The GDPR restricts what the EU calls “automated individual decision-making”,  And for the world’s biggest tech 

companies, that’s a potential problem. “Automated individual decision-making” is what neural networks do. 

“They’re talking about machine learning,” says Bryce Goodman, a philosophy and social science researcher at 

Oxford University.

The regulations prohibit any automated decision that “significantly affects” EU citizens. This includes techniques 

that evaluate a person’s “performance at work, economic situation, health, personal preferences, interests, 

reliability, behavior, location, or movements.” At the same time, the legislation provides what Goodman calls a 

“right to explanation.” In other words, the rules give EU citizens the option of reviewing how a particular service 

made a particular algorithmic decision.

• EU General Data Protection Regulation (GDPR)
▪ In Effect May 2018
▪ Penalties as high as 4% of annual revenue

Capital One Pursues ‘Explainable AI’ to Guard Against 

Bias in Models
The effort aims to better understand how a machine-
learning model comes to a logical conclusion.

Capital One Financial Corp. is researching ways that 

machine-learning algorithms could explain the rationale 
behind their answers, which could have far-reaching 

impacts in guarding against potential ethical and 
regulatory breaches as the firm uses more artificial 
intelligence in banking.

The Next Big Disruptive Trend in Business. . . 

Explainable AI
With so many different approaches to machine learning 
– neural networks, complex algorithms, probabilistic 

graphical models – it’s getting increasingly difficult for 
humans to figure out how machines are coming to their 

conclusions. 

Sure, A.I. Is Powerful—But Can We Make It Accountable?

Imagine you apply for insurance with a firm that uses a machine-learning system, instead of a human with an actuarial table, to predict 
insurance risk. After crunching your info—age, job, house location and value—the machine decides, nope, no policy for you. You ask 
the same question: “Why?”

Nobody can answer, because nobody understands how these systems—neural networks modeled on the human brain—produce their 

results.
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Importance of a condition c: error 
variation with and without c

Relevance: error variation and 
covering C(r)

Rule r

Relevance Rv of feature xj

Feature ranking



Importance of a condition c: error 
variation with and without c

Relevance: error variation and 
covering C(r)

Relevance Rv of feature xj

Rule of thumb: Rv<10%: marginal contribution;  C(r)<20%: outliers 

Rule r

Feature ranking



Logic Learning Machine (LLM)

R&D Team Impara Srl
Spin-off of CNR-IEIIT

Logic Learning Machine (LLM)
(Parodi et al., 2017; Skotko et al., 2017) 

LLM is able to treat huge datasets and is therefore suited for Big Data Analytics.

The LLM model is currently used by several big companies in a wide variety of fields, 
among which supply chain, banking, insurance, industry, energy, water distribution, …

LLM Task from Rulex®Analytics

Switching Neural Network (SNN)
(Muselli, 2006; Muselli & Ferrari, 2011) 



XAI example

XAI example slide 
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XAI example

XAI example slide 

Live demo in Rulex (www.rulex.ai)
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http://www.rulex.ai/


@CNR
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AEROSPACE @ CNR-DIITET: NEW SHARED INFRASTRUCTURE

TERAM

INFRASTUCTURE

CNR-IEIIT

CNR-STIIMA

CNR-IFAC

CNR-IMEM

CNR-IMATI

CNR-ISTI

TERAM: Advanced manufacturing and testing of mm-wave and sub-THz 
components & systems

LAB  for RF testing of 
components @ mm-wave and 

sub-THz 

LAB for advanced manufacturing:
• Micro-machining
• Additive manufacturing
• Non-destructive testing



TD 6 - RF Systems, Payloads 
and Technologies

TD 7 - Electromagnetic Technologies 
and Techniques

TECHNOLOGICAL DOMAINS 
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AEROSPACE @ CNR-IEIIT: KNOW-HOW

Electromagnetic 
Modelling

Electromagnetic and 
Mechanical Design

MAIT

Electromagnetic Testing



Copernicus EC Programme

• Phase A/B1 of passive Microwave 
Imaging Mission (CIMR) (2018 - 2020)

• Copernicus HPCM  -CIMR - Phases B2, 
C/D and E1 (2020-2023)

Earth 
Observation

Satellite 
Telecommunication

Astrophysics/
Radio-Astronomy

APPLICATION DOMAINS
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MetOp-SG  ESA Programme

MWI Microwave Imager

(2018 - 2021)

ARTES ESA Programme

• Pre-aligned non-intrusive Ku-band direct-
to-home antenna using advanced
manufacturing (2018 -2021)

• On-board feed chain for combined Q, V-
band feeder and Ka-band user LInks
(2020 - 2022)

• Radio-Frequency (RF) feeds with 
integrated RF, mechanical and thermal 
functions (2020 - 2022)

GSTP ESA Programme

Evaluation and consolidation of Additive Manufacturing processes
and materials for the manufacturing of RF hardware  (2019-2022)

International Square-Kilometer-Array 
Programme

(2010 - )

ASI Mission

Large Scale Polarization Explorer

(2011 - 2022 )

ITI ESA Programme

3D screen printing of high frequency
components (2018 - 2020)
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AEROSPACE @ CNR-IEIIT: ON-GOING ACTIVITIES

TRANSVERSAL TO APPLICATION DOMAINS



Conclusions 
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Enable NASA employees to achieve greater scientific discoveries and systems innovations

Conclusions: view into the future
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Titolo

Bla bla
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Logic Learning Machines vs Decision Trees

Logic Learning 
Machine

Training is fast and parallelizable

Models rules are independent from each other

Relevance measures for variables and values are 
automatically generated

Accuracy is generally higher

Specificity and sensitivity can be controlled

Usually models are less complex with simpler 
rules

Decision Trees

Training is fast but not efficiently parallelizable

Model rules are disjoint but conditions are strictly 
dependent

Relevance measures for variables and values are 
not directly available

Accuracy is generally poorer

Specificity and sensitivity cannot be controlled

Usually models are more complex with longer 
rules



Rule generation

50



Discretization

A.1)

Cut-offs applied to continuos variables.
Optimal placement of the cut-offs.



Discretization

A.1)

Cut-offs applied to continuos variables.
Optimal placement of the cut-offs.

A simple bidimensional problem: the points of the two classes are represented by circles 
and crosses, respectively. 

E. Ferrari and M. Muselli. Maximizing pattern separation in discretizing continuous features for 
classication purposes. In The 2010 International Joint Conference on Neural Networks (IJCNN), pages 
1{8, July 2010. doi: 10.1109/IJCNN.2010.5596838.



Discretization & 

Latticization

[x1,…,xn] [0,1]n

Class x1 Bin(x1) x2 Bin(x2) Final string

B 8 011 0 01 01101

A 12 101 1 10 10110

A 22 110 1 10 11010

- Inverse only-one coding

[y1,…,yk] [0,1]k
[0,1]n+k

A)

Latticization: for continous variables, as x1, binary values correspond to cut-

offs between adjacent values (e.g.: 10 and 20)



Discretization & 

Latticization

[x1,…,xn] [0,1]n

Shadow Clustering (SC)

Class x1 Bin(x1) x2 Bin(x2) Final string

B 8 011 0 01 01101

A 12 101 1 10 10110

A 22 110 1 10 11010

000

001 010 100

011 (B) 101 (A) 110 (A)

111 

- Inverse only-one coding

- Implicants identification

- Boolean rules extraction

[y1,…,yk] [0,1]k
[0,1]n+k

A)

B)
Implicant based on x1

for the identification

of class A.

No tuning of any 

parameter in SC!

For continous variables, as x1, binary values correspond to cut-offs between

adjacent values (e.g.: 10 and 20)



Discretization & 

Latticization

[x1,…,xn] [0,1]n

Shadow Clustering (SC)

Conversion into

Intelligible Rules

If X > valx and Y ≤ valy

then Class = A

Class x1 Bin(x1) x2 Bin(x2) Final string

B 8 011 0 01 01101

A 12 101 1 10 10110

A 22 110 1 10 11010

000

001 010 100

011 (B) 101 (A) 110 (A)

111 

- Inverse only-one coding

- Implicants identification

- Boolean rules extraction

Original values Binary string

8 (B) 011

12 (A) 101

22 (A) 110

If x1 > 10

then Class = A

Condition on 

variable x1

[y1,…,yk] [0,1]k
[0,1]n+k

A)

B)

C)

Implicant based on x1

for the identification

of class A.

No tuning of any 

parameter in SC!

For continous variables, as x1, binary values correspond to cut-offs between

adjacent values (e.g.: 10 and 20)

Cut-offs identified during latticization and suitable for classification purposes

according to SC are recovered and used to obtain the conditions inside the rules
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