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why is space travel worth it?



‘lo maggior corno della fiamma antica’

‘...quando

mi diparti da Circe, che sottrasse
me piu d’'un anno la presso a Gaeta,
prima che si Enea la nomasse,

né dolcezza di figlio, né la pieta
del vecchio padre, né ’l debito amore
lo qual dovea Penelope far lieta,

vincer potero dentro a me |'ardore
ch’i’ ebbi a divenir del mondo esperto
e de li vizi umani e del valore;...



new achievements in science
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analysis of cosmic rays:
* antimatter
* dark matter




NASA spin-off technologies
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why is space travel not worth it?






are we still ready to spend huge amounts of money?

apollo space program
25.4 billion dollars

space shuttle program
196 billion dollars

international space station program
150 billion dollars (so far)
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space is not a friendly environment
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what can we do?
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4.

5.

aldrin’s list

propulsion for huge distance flights

. |technology for protection from radiation

appropriate oxygen, food and water supplying

domotics

psychological training
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ionizing radiation
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solar flares

* released energy: about 10
billion megaton

e surface: 10,000 km?

* billions of tons of accelerated
matter up to 10° km/h

e electromagnetic radiation
emitted at all wavelengths



space weather

space weather is the
combination of the following
facts:
* the heliosphere is involved
* flares are the trigger
e solar wind, coronal mass
ejections (CMEs) and solar
energetic particles (SEPs) are
included
* impacts on:
o GPS
o flight safety
o power grids
o human health
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flare paradox

inductance: 10° henry

electric potential: 220 V

light-up (predicted): 10 s

light-up (observed): instantaneous

inductance: 10 henry

electric potential: 10° V

light-up (predicted): 300,000 anni
light-up (observed): some minutes



space weather
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how to explain the flare paradox
how to forecast space weather

e simulation: numerical simulation of the magnetohydrodynamic
equations

e data analysis: artificial intelligence for flare modeling and prediction
— data
— mathematics
— technology



AR 12673

SDO/HMI

each flare is originated by an
active region (AR)

not all ARs originate a flare

SDO/HMI provides AR images
(magnetograms) every
12 minutes since february 2010

on august 30 2017 AR 12673 becomes
visible on an HMI magnetogram:
would it be possible to predict whether
AR 12673 will originate a flare?




machine learning - ingredients

HMI archive

an Al algorithm
for extracting properties (features)
from AR images

a set of labels associated to the set of extracted properties
(flare occurrence: yes/no; flare intensity)

a neural network =




machine learning - paradigm

the neural network is trained (optimized) by exploiting sets of
properties extracted from images in the HMI archive and the
corresponding labels

a new HMI image arrives
the Al algorithm extracts all properties

the trained neural network performs its prediction



AR 12673 - training

 HMI archive: 7300 images in the time range 2012-2016
(cadence: 6 hours)

e 200 properties extracted from each image by Al

* labels: yes/no + a letter indicating the flare intensity (C, M, X)



AR 12673 - previsione

la tempesta del settembre 2017
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FLARECAST

ESA space situation awareness (SSA) space weather service network
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solar orbiter

* 9instruments altogether looking at the sun
e STIX + EUI: flare morphology + acceleration mechanisms
e STIX + METIS: connection between flares and CMEs

launch: february 10 2020, cape canaveral



the spectrometer/telescope for imaging X-rays
(STIX)
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the STIX imaging concept
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STIX science objectives

STIX major science goal are:

* understanding the energy release and particle acceleration
mechanisms at the sun

* understanding the particle transport mechanisms into the
interplanetary space

warning: these objectives are the same of previous missions



STIX and the rest of SOLO (reflections)



flares morphology

SDO AIA_2 193 13-Feb-2011 1733:31.840 UT

credit:
brian dennis
NASA GSFC

image reconstruction
computational pipeline for the from STIX visibilities

automatic integration of EUV (EUI)
and hard X-ray (STIX) images
of solar flares

desaturation of EUl images

image processing for
multimodal image coregistration



flares/CMEs connection

machine learning allows
ranking the ARs properties

hard X-ray data mostly correlated with

(a) SMART aSSOCiated to ﬂares flareS and CMEs
A

available data:
magnetograms (PHI);
| hard X-rays (STIX);
coronagraph data coronagraph (METIS)
associated to CMEs

analysis of features
should allow connecting
flares and CMEs physics



coronal holes

* solar wind variations

* CMEs

* hard X-ray emission

* machine learning should allow automatic multi-modal
stratification and characterization of data associated to coronal holes

* machine learning should allow investigation of coronal holes properties
mostly correlated with the different kinds of eruption

 kinds of data needed: EUV (EUI); X-ray (STIX); coronagraph (METIS);
solar wind (SWA)



take home messages (in my view)

* STIX alone will likely not do much better than previous
instruments (although confirmation of results from previous
missions would be a result)

e STIX data integrated with other SOLO data (EUI, METIS, SWA,
PHI) could provide breakthroughs in heliophysics and space
weather

but

Al-based computational data analysis is needed



take home messages (addendum)

Al applied to experimental observations:

* we are not starting from scratch:

o EU projects (HESPE, FLARECAST)

o technologies from other disciplines
* Al methods are not a miracle cure:

o stability issues

o skill scores in machine learning

o deep learning is not the cure-all for sophisticated data

warning: Al without physics is not reliable
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